Two-Dimensional Steady State Heat Conduction

This sample analysis illustrates the manner in which the *UD_scalar* program can be used to perform steady state heat conduction analyses. The body analyzed, a rectangular plate with a cut-out slot, is shown below.

By the nature of the analysis, this body is assumed to have a unit thickness and to experience zero heat flow into (or out of) the \(x_1\)-\(x_2\) plane. Along a portion of the left edge of the plate, a temperature of 100 degrees is maintained; the entire right edge is maintained at 0 degrees. The remaining portions of the boundary are insulated (i.e., along such portions, the heat flux is zero). A copy of the input data file is provided below.
anal tit "2-d test of 4-node quad. heat conduction elements"
!
analysis action analyze
analysis temporal static
!
!
dim max scalar_1 1
dim max nodes 100
dim max qs4 80
!
echo elements off ! turn off printing of element data
echo nodes off ! turn off printing of nodal data
!
finish settings
!
scalar conductivity constant number 1 &
 desc "sample (constant) scalar conductivity" k11 2.0 k22 1.0
!
nodes line number 1 x1 0.0 x2 0.0
nodes line number 5 x1 0.0 x2 4.0 incr 1
nodes line number 7 x1 0.0 x2 5.0 incr 1
nodes line number 42 x1 4.0 x2 5.0 incr 7 ratio 0.80
nodes line number 40 x1 4.0 x2 4.0 incr -1
nodes line number 36 x1 4.0 x2 0.0 incr -1
nodes line number -1 x1 0.0 x2 0.0 incr -7 ratio 1.25
nodes line number 47 x1 4.5 x2 4.0
nodes line number 49 x1 4.5 x2 2.0 incr 1
nodes line number 50 x1 5.0 x2 0.0 incr -7 ratio 0.80
nodes line number 98 x1 10.0 x2 5.0 incr 7 ratio 1.25
nodes line number 96 x1 10.0 x2 4.0 incr -1
nodes line number 92 x1 10.0 x2 0.0 incr -1
nodes line number 50 x1 5.0 x2 0.0 incr -7 ratio 0.80
nodes line number 54 x1 5.0 x2 4.0 incr 1
nodes line number 50 x1 5.0 x2 0.0 incr -7 ratio 0.80
nodes line number 54 x1 5.0 x2 4.0 incr 1
nodes line number -56 x1 5.0 x2 5.0 incr 1
!

element scalar typ "qs4" nodes 1 8 9 2 scalar 1 &
 1_add 4 1_incr 7 2_add 5 2_incr 1
element scalar typ "qs4" nodes 40 47 48 41 scalar 1 &
 1_add 1 1_incr 7 2_add 1 2_incr 1
element scalar typ "qs4" nodes 50 57 58 51 scalar 1 &
 1_add 5 1_incr 7 2_add 5 2_incr 1
!
generate surfaces
!
specification conc scalar nodes 4:7:1 phi value 100.0
specification conc scalar nodes 92:98:1 phi value 0.0
!
finish data
!
solution time final 1.0 increments 1 output 1:10:1
!
finished loading
This sample analysis illustrates the use of the “missing” node points option, used in order to facilitate the generation of elements. The node and element numbers used in these analyses are shown below.
The results associated with this analysis are graphically summarized below.

Temperature Contours Associated with Analysis

Heat Flux Vectors Associated with Analysis

The associated output file is given below.
2-d test of 4-node quad. heat conduction elements

Largest NODE number which can used in the mesh = 100
Max. no. of CONSTANT scalar conductivity idealizations = 1
Max. no. of 4-node quad. "scalar" (QS4) elements = 80

--> analysis with SCALAR primary dependent variables shall be performed

--> TWO-DIMENSIONAL solution domain assumed (PLANE STRESS idealization)

--> solver type used : SKYLINE
--> storage type : SYMMETRIC
--> "Isoparametric" mesh generation scheme used

--> LINEAR analysis

© Copyright 2006: V. N. Kaliakin : Department of Civil & Environmental Engineering : University of Delaware
--> idealization no.: 1

Type: constant scalar conductivity coefficients

Info.: sample (constant) scalar conductivity

"Conductivities" (material parameters):

\[
\begin{align*}
\kappa_{11} &= 2.000E+00 & \kappa_{12} &= 0.000E+00 & \kappa_{13} &= 0.000E+00 \\
\kappa_{22} &= 1.000E+00 & \kappa_{23} &= 0.000E+00 \\
\kappa_{33} &= 1.000E+00 \\
\end{align*}
\]

Source term \(S_1 = 0.000E+00 \)

Source term \(S_2 = 0.000E+00 \)

==

\textbf{NODE POINT SPECIFICATIONS}

==

<table>
<thead>
<tr>
<th>Node Number</th>
<th>Coordinates</th>
<th>phi (p.d.v.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>((x_1 = 6.018E-36, x_2 = 3.000E+00))</td>
<td>1.000E+02</td>
</tr>
<tr>
<td>5</td>
<td>((x_1 = -6.019E-36, x_2 = 4.000E+00))</td>
<td>1.000E+02</td>
</tr>
<tr>
<td>6</td>
<td>((x_1 = -1.190E-40, x_2 = 4.500E+00))</td>
<td>1.000E+02</td>
</tr>
<tr>
<td>7</td>
<td>((x_1 = -5.510E-29, x_2 = 5.000E+00))</td>
<td>1.000E+02</td>
</tr>
<tr>
<td>92</td>
<td>((x_1 = 1.000E+01, x_2 = 9.404E-37))</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>93</td>
<td>((x_1 = 1.000E+01, x_2 = 1.000E+00))</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>94</td>
<td>((x_1 = 1.000E+01, x_2 = 2.000E+00))</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>95</td>
<td>((x_1 = 1.000E+01, x_2 = 3.000E+00))</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>96</td>
<td>((x_1 = 1.000E+01, x_2 = 4.000E+00))</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>97</td>
<td>((x_1 = 1.000E+01, x_2 = 4.500E+00))</td>
<td>0.000E+00</td>
</tr>
</tbody>
</table>
98 : (x1 = 1.000E+01, x2 = 5.000E+00)
phi (p.d.v.) = 0.000E+00

end of mathematical model data

==
= E L E M E N T F L U X E S =
==

--> element 1 (type = QS4) : [
@x1 = 5.950E-01, x2 = 5.000E-01) : flux_1 = 4.307E-01 ; flux_2 = -2.774E-01
--> element 2 (type = QS4) : [
@x1 = 1.666E+00, x2 = 5.000E-01) : flux_1 = 8.299E-01 ; flux_2 = -8.424E-02
--> element 3 (type = QS4) : [
@x1 = 2.523E+00, x2 = 5.000E-01) : flux_1 = 8.569E-01 ; flux_2 = 1.106E-01
--> element 4 (type = QS4) : [
@x1 = 3.208E+00, x2 = 5.000E-01) : flux_1 = 5.608E-01 ; flux_2 = 2.775E-01
--> element 5 (type = QS4) : [
@x1 = 3.756E+00, x2 = 5.000E-01) : flux_1 = 1.330E-01 ; flux_2 = 3.219E-01
--> element 6 (type = QS4) : [
@x1 = 5.950E-01, x2 = 1.500E+00) : flux_1 = 7.590E-01 ; flux_2 = -1.289E+00
--> element 7 (type = QS4) : [
@x1 = 1.666E+00, x2 = 1.500E+00) : flux_1 = 2.599E+00 ; flux_2 = -4.449E-01
--> element 8 (type = QS4) : [
@x1 = 2.523E+00, x2 = 1.500E+00) : flux_1 = 2.100E+00 ; flux_2 = 6.758E-01
--> element 9 (type = QS4) : [
@x1 = 3.208E+00, x2 = 1.500E+00) : flux_1 = 1.227E+00 ; flux_2 = 1.185E+00
--> element 10 (type = QS4) : [
@x1 = 3.756E+00, x2 = 1.500E+00) : flux_1 = 6.842E-01 ; flux_2 = 1.478E+00
--> element 11 (type = QS4) : [

© Copyright 2006: V. N. Kaliakin : Department of Civil & Environmental Engineering : University of Delaware
UD_scalar documentation: program version 1.00

Sample Analyses

@
@ x1 = 5.950E-01, x2 = 2.500E+00 : flux_1 = 8.039E+00 ; flux_2 = -5.345E+00

--> element 12 (type = QS4) : [

@
@ x1 = 1.666E+00, x2 = 2.500E+00 : flux_1 = 7.001E+00 ; flux_2 = 2.372E-01

--> element 13 (type = QS4) : [

@
@ x1 = 2.523E+00, x2 = 2.500E+00 : flux_1 = 5.492E+00 ; flux_2 = 2.503E+00

--> element 14 (type = QS4) : [

@
@ x1 = 3.208E+00, x2 = 2.500E+00 : flux_1 = 3.081E+00 ; flux_2 = 3.850E+00

--> element 15 (type = QS4) : [

@
@ x1 = 3.756E+00, x2 = 2.500E+00 : flux_1 = -3.768E-01 ; flux_2 = 3.863E+00

--> element 16 (type = QS4) : [

@
@ x1 = 5.950E-01, x2 = 3.500E+00 : flux_1 = 1.520E+01 ; flux_2 = 2.109E-02

--> element 17 (type = QS4) : [

@
@ x1 = 1.666E+00, x2 = 3.500E+00 : flux_1 = 1.281E+01 ; flux_2 = 1.466E+00

--> element 18 (type = QS4) : [

@
@ x1 = 2.523E+00, x2 = 3.500E+00 : flux_1 = 1.235E+01 ; flux_2 = 4.574E+00

--> element 19 (type = QS4) : [

@
@ x1 = 3.208E+00, x2 = 3.500E+00 : flux_1 = 1.186E+01 ; flux_2 = 8.510E+00

--> element 20 (type = QS4) : [

@
@ x1 = 3.756E+00, x2 = 3.500E+00 : flux_1 = 1.057E+01 ; flux_2 = 1.384E+01

--> element 21 (type = QS4) : [

@
@ x1 = 5.950E-01, x2 = 4.250E+00 : flux_1 = 1.561E+01 ; flux_2 = 4.397E-01

--> element 22 (type = QS4) : [

@
@ x1 = 1.666E+00, x2 = 4.250E+00 : flux_1 = 1.654E+01 ; flux_2 = 1.584E+00

--> element 23 (type = QS4) : [

@
@ x1 = 2.523E+00, x2 = 4.250E+00 : flux_1 = 1.840E+01 ; flux_2 = 3.530E+00

--> element 24 (type = QS4) : [

@
@ x1 = 3.208E+00, x2 = 4.250E+00 : flux_1 = 2.189E+01 ; flux_2 = 6.305E+00

--> element 25 (type = QS4) : [

@
@ x1 = 3.756E+00, x2 = 4.250E+00 : flux_1 = 2.770E+01 ; flux_2 = 1.019E+01

--> element 26 (type = QS4) : [

@
@ x1 = 5.950E-01, x2 = 4.750E+00 : flux_1 = 1.612E+01 ; flux_2 = 1.652E-01
--> element 27 (type = QS4) : [
.................................
@(x1 = 1.666E+00, x2 = 4.750E+00) : flux_1 = 1.757E+01 ; flux_2 = 6.075E-01
--> element 28 (type = QS4) : [
.................................
@(x1 = 2.523E+00, x2 = 4.750E+00) : flux_1 = 2.060E+01 ; flux_2 = 1.315E+00
--> element 29 (type = QS4) : [
.................................
@(x1 = 3.208E+00, x2 = 4.750E+00) : flux_1 = 2.525E+01 ; flux_2 = 2.173E+00
--> element 30 (type = QS4) : [
.................................
@(x1 = 3.756E+00, x2 = 4.750E+00) : flux_1 = 3.086E+01 ; flux_2 = 1.944E+00
--> element 31 (type = QS4) : [
.................................
@(x1 = 4.250E+00, x2 = 4.750E+00) : flux_1 = 4.721E+01 ; flux_2 = -6.479E+00
--> element 32 (type = QS4) : [
.................................
@(x1 = 4.750E+00, x2 = 4.250E+00) : flux_1 = 4.736E+01 ; flux_2 = 6.050E+00
--> element 33 (type = QS4) : [
.................................
@(x1 = 4.250E+00, x2 = 4.750E+00) : flux_1 = 3.338E+00 ; flux_2 = 6.050E+00
-> element 42 (type = QS4) : |

.................................
@(x1 = 5.722E+00, x2 = 1.500E+00) : flux_1 = 1.606E+00 ; flux_2 = -2.696E+00

-> element 43 (type = QS4) : |

.................................
@(x1 = 6.346E+00, x2 = 1.500E+00) : flux_1 = 2.883E+00 ; flux_2 = -2.477E+00

-> element 44 (type = QS4) : |

.................................
@(x1 = 7.127E+00, x2 = 1.500E+00) : flux_1 = 4.264E+00 ; flux_2 = -2.026E+00

-> element 45 (type = QS4) : |

.................................
@(x1 = 8.103E+00, x2 = 1.500E+00) : flux_1 = 5.419E+00 ; flux_2 = -1.333E+00

-> element 46 (type = QS4) : |

.................................
@(x1 = 5.722E+00, x2 = 2.500E+00) : flux_1 = -5.668E-01 ; flux_2 = -5.562E+00

-> element 47 (type = QS4) : |

.................................
@(x1 = 6.346E+00, x2 = 2.500E+00) : flux_1 = 2.722E+00 ; flux_2 = -5.752E+00

-> element 48 (type = QS4) : |

.................................
@(x1 = 7.127E+00, x2 = 2.500E+00) : flux_1 = 5.105E+00 ; flux_2 = -4.889E+00

-> element 49 (type = QS4) : |

.................................
@(x1 = 8.103E+00, x2 = 2.500E+00) : flux_1 = 6.629E+00 ; flux_2 = -3.544E+00

-> element 50 (type = QS4) : |

.................................
@(x1 = 5.222E+00, x2 = 3.500E+00) : flux_1 = 1.045E+01 ; flux_2 = -1.548E+01

-> element 51 (type = QS4) : |

.................................
@(x1 = 5.722E+00, x2 = 3.500E+00) : flux_1 = 1.132E+01 ; flux_2 = -6.766E+00

-> element 52 (type = QS4) : |

.................................
@(x1 = 6.346E+00, x2 = 3.500E+00) : flux_1 = 1.135E+01 ; flux_2 = -6.939E+00

-> element 53 (type = QS4) : |

.................................
@(x1 = 7.127E+00, x2 = 3.500E+00) : flux_1 = 1.045E+01 ; flux_2 = -1.548E+01
max \mid \text{flux}_1 \mid = 4.736 \times 10^1 \text{ at } x_1 = 4.750 \times 10^0, \ x_2 = 4.250 \times 10^0
max | flux_2 | = 1.548E+01 @ x1 = 5.222E+00, x2 = 3.500E+00

= ==
= NODAL QUANTITIES =
= ==

node : 1 (x1 = 5.510E-29, x2 = -6.019E-36), phi = 8.865E+01
node : 2 (x1 = -4.514E-36, x2 = 1.000E+00), phi = 8.903E+01
node : 3 (x1 = 6.018E-36, x2 = 3.000E+00), phi = 1.000E+02
node : 4 (x1 = 6.018E-36, x2 = 4.000E+00), phi = 1.000E+02
node : 5 (x1 = -1.190E-40, x2 = 4.500E+00), phi = 1.000E+02
node : 6 (x1 = -5.510E-29, x2 = 5.000E+00), phi = 1.000E+02
node : 7 (x1 = -4.514E-36, x2 = 1.000E+00), phi = 8.850E+01
node : 8 (x1 = 1.190E+00, x2 = 3.009E-36), phi = 8.850E+01
node : 9 (x1 = 1.190E+00, x2 = 2.000E+00), phi = 8.987E+01
node : 10 (x1 = 1.190E+00, x2 = 3.000E+00), phi = 9.098E+01
node : 11 (x1 = 1.190E+00, x2 = 4.000E+00), phi = 9.093E+01
node : 12 (x1 = 1.190E+00, x2 = 4.500E+00), phi = 9.049E+01
node : 13 (x1 = 1.190E+00, x2 = 5.000E+00), phi = 9.033E+01
node : 14 (x1 = 2.142E+00, x2 = 6.019E-36), phi = 8.819E+01
node : 15 (x1 = 2.142E+00, x2 = 1.000E+00), phi = 8.819E+01
node : 16 (x1 = 2.142E+00, x2 = 2.000E+00), phi = 8.788E+01
node : 17 (x1 = 2.142E+00, x2 = 3.000E+00), phi = 8.630E+01
node : 18 (x1 = 2.142E+00, x2 = 4.000E+00), phi = 8.341E+01
node : 19 (x1 = 2.142E+00, x2 = 4.500E+00), phi = 8.227E+01
node : 20 (x1 = 2.142E+00, x2 = 5.000E+00), phi = 8.183E+01
node : 21 (x1 = 2.903E+00, x2 = -4.514E-36), phi = 8.786E+01
node : 22 (x1 = 2.903E+00, x2 = 1.000E+00), phi = 8.753E+01
node : 23 (x1 = 2.903E+00, x2 = 2.000E+00), phi = 8.620E+01
node : 24 (x1 = 2.903E+00, x2 = 3.000E+00), phi = 8.329E+01
node : 25 (x1 = 2.903E+00, x2 = 4.000E+00), phi = 7.703E+01
node : 26 (x1 = 2.903E+00, x2 = 4.500E+00), phi = 7.464E+01
node : 27 (x1 = 2.903E+00, x2 = 5.000E+00), phi = 7.377E+01
node : 28 (x1 = 3.513E+00, x2 = -6.019E-36), phi = 8.782E+01
node : 29 (x1 = 3.513E+00, x2 = 1.000E+00), phi = 8.753E+01
node : 30 (x1 = 3.513E+00, x2 = 2.000E+00), phi = 8.620E+01
node : 31 (x1 = 3.513E+00, x2 = 3.000E+00), phi = 8.329E+01
node : 32 (x1 = 3.513E+00, x2 = 4.000E+00), phi = 7.703E+01
node : 33 (x1 = 3.513E+00, x2 = 4.500E+00), phi = 7.464E+01
node : 34 (x1 = 3.513E+00, x2 = 5.000E+00), phi = 7.377E+01
node : 35 (x1 = 4.000E+00, x2 = -2.633E-36), phi = 8.782E+01
node : 36 (x1 = 4.000E+00, x2 = 1.000E+00), phi = 8.753E+01
node : 37 (x1 = 4.000E+00, x2 = 2.000E+00), phi = 8.620E+01
node : 38 (x1 = 4.000E+00, x2 = 3.000E+00), phi = 8.329E+01
node : 39 (x1 = 4.000E+00, x2 = 4.000E+00), phi = 7.703E+01
node : 40 (x1 = 4.000E+00, x2 = 4.500E+00), phi = 7.464E+01
node : 41 (x1 = 4.000E+00, x2 = 5.000E+00), phi = 7.377E+01
node : 42 (x1 = 4.000E+00, x2 = 5.000E+00), phi = 5.867E+01
node : 43 (x1 = 4.500E+00, x2 = 5.000E+00), phi = 5.063E+01
node : 44 (x1 = 4.500E+00, x2 = 5.000E+00), phi = 5.067E+01
node : 45 (x1 = 5.000E+00, x2 = -6.019E-36), phi = 8.215E+00
node : 46 (x1 = 5.000E+00, x2 = 1.000E+00), phi = 9.045E+00

© Copyright 2006: V. N. Kaliakin : Department of Civil & Environmental Engineering : University of Delaware
node : 52 (x1 = 5.000E+00, x2 = 2.000E+00), phi = 1.206E+01
node : 53 (x1 = 5.000E+00, x2 = 3.000E+00), phi = 1.719E+01
node : 54 (x1 = 5.000E+00, x2 = 4.000E+00), phi = 3.555E+01
node : 55 (x1 = 5.000E+00, x2 = 4.500E+00), phi = 4.199E+01
node : 56 (x1 = 5.000E+00, x2 = 5.000E+00), phi = 4.270E+01
node : 57 (x1 = 5.444E+00, x2 = 3.009E-36), phi = 8.116E+00
node : 58 (x1 = 5.444E+00, x2 = 1.000E+00), phi = 8.993E+00
node : 59 (x1 = 5.444E+00, x2 = 2.000E+00), phi = 1.175E+01
node : 60 (x1 = 5.444E+00, x2 = 3.000E+00), phi = 1.775E+01
node : 61 (x1 = 5.444E+00, x2 = 4.000E+00), phi = 3.035E+01
node : 62 (x1 = 5.444E+00, x2 = 4.500E+00), phi = 3.483E+01
node : 63 (x1 = 5.444E+00, x2 = 5.000E+00), phi = 3.623E+01
node : 64 (x1 = 5.999E+00, x2 = 6.019E-36), phi = 7.793E+00
node : 65 (x1 = 5.999E+00, x2 = 1.000E+00), phi = 8.610E+00
node : 66 (x1 = 5.999E+00, x2 = 2.000E+00), phi = 1.124E+01
node : 67 (x1 = 5.999E+00, x2 = 3.000E+00), phi = 1.675E+01
node : 68 (x1 = 5.999E+00, x2 = 4.000E+00), phi = 2.507E+01
node : 69 (x1 = 5.999E+00, x2 = 4.500E+00), phi = 2.805E+01
node : 70 (x1 = 5.999E+00, x2 = 5.000E+00), phi = 2.912E+01
node : 71 (x1 = 6.693E+00, x2 = 6.019E-36), phi = 7.048E+00
node : 72 (x1 = 6.693E+00, x2 = 1.000E+00), phi = 7.766E+00
node : 73 (x1 = 6.693E+00, x2 = 2.000E+00), phi = 1.009E+01
node : 74 (x1 = 6.693E+00, x2 = 3.000E+00), phi = 1.436E+01
node : 75 (x1 = 6.693E+00, x2 = 4.000E+00), phi = 1.958E+01
node : 76 (x1 = 6.693E+00, x2 = 4.500E+00), phi = 2.139E+01
node : 77 (x1 = 6.693E+00, x2 = 5.000E+00), phi = 2.204E+01
node : 78 (x1 = 7.560E+00, x2 = 6.019E-36), phi = 5.653E+00
node : 79 (x1 = 7.560E+00, x2 = 1.000E+00), phi = 6.212E+00
node : 80 (x1 = 7.560E+00, x2 = 2.000E+00), phi = 6.943E+00
node : 81 (x1 = 7.560E+00, x2 = 3.000E+00), phi = 1.076E+01
node : 82 (x1 = 7.560E+00, x2 = 4.000E+00), phi = 1.373E+01
node : 83 (x1 = 7.560E+00, x2 = 4.500E+00), phi = 1.471E+01
node : 84 (x1 = 7.560E+00, x2 = 5.000E+00), phi = 1.506E+01
node : 85 (x1 = 8.645E+00, x2 = 6.019E-36), phi = 3.354E+00
node : 86 (x1 = 8.645E+00, x2 = 1.000E+00), phi = 3.672E+00
node : 87 (x1 = 8.645E+00, x2 = 2.000E+00), phi = 4.607E+00
node : 88 (x1 = 8.645E+00, x2 = 3.000E+00), phi = 5.995E+00
node : 89 (x1 = 8.645E+00, x2 = 4.000E+00), phi = 7.334E+00
node : 90 (x1 = 8.645E+00, x2 = 4.500E+00), phi = 7.755E+00
node : 91 (x1 = 8.645E+00, x2 = 5.000E+00), phi = 7.904E+00
node : 92 (x1 = 1.000E+01, x2 = 9.404E-37), phi = 2.781E-20
node : 93 (x1 = 1.000E+01, x2 = 1.000E+00), phi = 6.051E-20
node : 94 (x1 = 1.000E+01, x2 = 2.000E+00), phi = 7.431E-20
node : 95 (x1 = 1.000E+01, x2 = 3.000E+00), phi = 9.351E-20
node : 96 (x1 = 1.000E+01, x2 = 4.000E+00), phi = 8.189E-20
node : 97 (x1 = 1.000E+01, x2 = 4.500E+00), phi = 4.842E-20
node : 98 (x1 = 1.000E+01, x2 = 5.000E+00), phi = 2.462E-20

max | phi | = 1.000E+02 @ node 4 (6.018E-36, 3.000E+00)

ud_scalar -> end of analysis