MATERIAL RAMBERG-OSGOOD

Synopsis:
The MATERIAL RAMBERG-OSGOOD command is used to describe a time-independent Ramberg-Osgood material idealization [1].

Syntax:
MATerial RAMberg-osgood NUMber ##
 (DScription "string")
 (MODulus #.#) (ALPha #.#) (M_PARameter #.#)
 (SIGma_r #.#)

Explanatory Remarks:
The Ramberg-Osgood material idealization has the following form:

\[\varepsilon = \varepsilon^e + \sigma \frac{\sigma_r}{E} \left(\frac{\sigma}{\sigma_r} \right)^m \]

where \(\varepsilon \) is the uniaxial strain in the material and \(\sigma \) is the associated stress. The elastic modulus is denoted by \(E \), and \(\alpha \) and \(m \) are dimensionless model parameters. The latter is an integer (input as a floating-point number) that specifies the strain-hardening characteristics of the material. Finally, \(\sigma_r \) is a reference stress. The first term \(\sigma/E \) in the above equation is seen to be the elastic strain; the second term is the plastic strain.

As readily evident from the syntax of the MATERIAL RAMBERG-OSGOOD command, the keywords MODULUS, ALPHA, M_PARAMETER and SIGMA_R correspond to the parameters \(E \), \(\alpha \), \(m \) and \(\sigma_r \), respectively. The default values for these parameters are \(E = 300000 \), \(\alpha = 1.0 \), \(m = 1.0 \), and \(\sigma_r = 1.0 \).

Remarks:
1. If \(m \) is very large, then the plastic strain remains small until \(\sigma \) approaches \(\sigma_r \), and increases rapidly when \(\sigma \) exceeds \(\sigma_r \). Consequently, \(\sigma_r \) may be regarded as an approximate yield stress.
2. In the limit as \(m \) approaches infinity, the plastic strain is zero when \(\sigma < \sigma_r \) is determinate when \(\sigma = \sigma_r \), and is infinite when \(\sigma > \sigma_r \) (and is thus impossible). This limiting case described a perfectly plastic solid with yield stress of \(\sigma_r \).

3. The Ramberg-Osgood idealization is particularly well-suited to representing the virgin curve of work-hardening solids, especially ones without a sharply defined yield stress [2].

Example:
To specify a hypothetical Ramberg-Osgood material idealization, enter the following command:

```
mat ramberg-osgood number 1 &
  desc "arbitrary material parameters" &
  modulus 1.20e+07 alpha 0.4286 m_param 11.0 sigma_r 43500.0
```

See also:
The NONLINEAR, DIMENSION and the ELEMENT BAR MECHANICAL commands.

References
