Ch 9 (Chapters - 9

Ch 8 (8.1 - 8.10)

Begin / Review

Begin Analyzing

Concrete

Ch 7 (7.1 - 7.4)

Ch 6 (6.1 - 6.3.10)

Ch 3 (3.1 - 3.2.9)

Ch 2 (2.1, 2.2, 2.4)

Ch 1 (1.1 - 1.4)

Concrete

Exam Friday 10:30 - 12:30 (here)
Column

Ch 5
5.1 - 5.10

Ch 4
4.1 - 4.3

Fusion
Ch 3
3.1 - 3.5

Ch 10
10.2 and 10.3

Ch 9
9.1 - 9.9

Ch 8
8.1 - 8.3, 8.5, 8.6

Swell
\[\frac{68 \text{ cm}}{4} = 49.6 \text{ cm} \]

\[\frac{48 \text{ cm}}{3} = 16 \text{ cm} \]

Regarded: \(I \geq P \) \[\frac{68 \text{ cm}}{5} = 13.6 \text{ cm} \]

\(P_m = 1.6 \text{ cm} \)

\(P_5 = 30 \text{ km} \)

Correction to 10-18
\(P_n \): Fu u An

\(u \rightarrow \) tension members

Connection

- The increase in strength resulting from an eccentrically loaded
- The decrease in strength resulting from a welded connection
- The increase in strength resulting from a staggered bolt pattern

Questions

1. The shear lag factor accounts for:
(c) Both service & factored loads to compute the
service loads to compute the

If you are calculating a deflection

Mark the column longer
(9) Make strong with a higher yield strength
(9) Provide breaking in the strong axis
Steel column;

Which of the following will always increase the strength of a
or 1.5

ecumenical leadership of columns

Spelling out stories of stranger cases

(4) Hyde of Shirleys (Spiral vs. linear)

What does represent & signify

[]

Column capacitor, $F_n = \phi(A_g, H_5, f, t_s)$