Problem 4.20, 4.12, 4.21
Due 3/16

Load Combos: LAD
3/8" gusset plate
L - 1.0, 0.1, 0.8, 0.6
L0 = 0.2, 0.12

Concrete
1-1/2, 2, 3

Same size 2L - -
For a square section, assuming a creep of 1/2 in. (0.5 mm), the stress must be calculated to ensure it can't fail. The equation is:

\[\sigma = \frac{F}{A} \]

Where:
- \(\sigma \) is the stress
- \(F \) is the force
- \(A \) is the area

Given:
- \(F = 0.8 \) kN
- \(A = 0.10 \) m²

The minimum force per unit area (shear) is 0.8 kN/m².
Problem 9.13

Design Round Column

\(P_u = 300k, \quad R_c = 350k \)

1. Assume \(0.02A_g \)

2. \(f_c = 4ksi, \quad f_y = 60 ksi \)

3. \(h = 3, 1/2'(0.02) = 6.82 in \)

4. \(A_g = 3.1/2'(0.02) = 6.82 in^2 \)

5. \(A_g = 3.1/2'(0.02) = 6.82 in^2 \)

6. \(f_e = \frac{0.02A_g}{(0.02A_g)} + f_y (0.02A_g) \)

7. \(f_e = 0.02A_g \)

8. \(P_u = 1.2(300) + 1.6(350) \)

9. \(P_u = 1.2P + 1.6(350) \)

10. \(P = \frac{1}{2}P_b - \frac{1}{2}P_h \)

11. \(P = 1 \)

12. \(P = 2000 \)

13. \(f_e = 0.02A_g \)
\[\phi_n = 936 v > 920 v \]

\[\phi = (85 (c, 70)) \cdot \psi (346 - \phi) + 60 (\phi) \]

\[85 \% \]

\[11.52 \]

\[\phi \]

\[P \]

\[0.05 \]

\[1.08 \]

\[20 = 936 v \]

\[346 - \phi \]

\[0.01 = 1.11 \]

\[1.11 \]

\[6.53 \text{ in}^2 \]

\[20 = x \cdot (85 C, 70) (346 - \phi) + 60 (\phi) \]

\[(\phi) \]