<table>
<thead>
<tr>
<th>Outcome</th>
<th>Corresponding Course Element</th>
<th>Level of Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
</tbody>
</table>

1. Ability to apply knowledge of mathematics and science to engineering.
2. Ability to identify, formulate, and solve engineering problems in these areas: water supply/resources, environmental chemistry, wastewater, solid waste and hazardous waste management, atmospheric systems and air pollution control, and environmental/occupational health.
3. Ability to design and conduct laboratory experiments and to critically analyze and interpret data.
4. Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
5. Understanding of the function of natural and engineered environmental systems and ability to design their components and processes to meet societal needs.
6. Ability to perform environmental engineering design by means of problem-based experiences integrated throughout the curriculum.
7. Knowledge of professional practice issues, such as procurement of work, bidding versus quality-based selection processes, and the interactions of design and construction professionals in executing a project.
8. Understanding of professional and ethical responsibility, particularly the roles and responsibilities of public institutions and private organizations in environmental management.
9. Broad education and knowledge of contemporary issues necessary to understand the impact of engineering solutions in a global/societal context.
10. Recognition of the importance of professional licensure and the need for life-long learning.
11. Ability to function on multi-disciplinary teams.
12. Ability to communicate effectively.