POSITION ANNOUNCEMENT

Alston D. and Ada Lee Correll Presidential Chair in Energy
College of Engineering

The College of Engineering, University of Maine, Orono, Maine, invites applications for the Alston D. and Ada Lee Correll Presidential Chair in Energy. This position will focus on offshore structures for wind and tidal energy.

This Chair is funded by the generous gift from A.D. “Pete” and Ada Lee Correll of Atlanta, Georgia. The Corrells resided in Old Town, Maine, in the mid-1960’s where Mrs. Correll taught middle school and Mr. Correll completed double Masters degrees in chemical engineering, and pulp and paper technology from the University of Maine. Pete Correll went on to become one of the most respected and accomplished paper executives in the country, only recently retiring as Chair and CEO of Georgia Pacific. He now heads Atlanta Equity, a venture capital firm in Georgia that capitalizes mid-size businesses.

The University of Maine is a world leader in advanced composites materials and we are now applying this expertise to ocean energy. We have a major effort to tap Maine’s unique offshore wind potential which is estimated to be 149 GW within 50 nautical miles of the shore. This is 10 percent of the U.S. deep offshore wind resource. In addition, the tidal power potential along Maine’s coast is up to 250 MW. Maine has an offshore wind energy independence initiative whose goal is to deploy 5 GW of offshore wind by 2030 with an estimated investment of $20 billion. This initiative has funding support from the National Science Foundation, the US Dept of Energy, and private foundations. The National Institute of Standards and Technology recently awarded UMaine $12.4 million for the construction of an Advanced Nanocomposites in Renewable Energy Laboratory to support offshore wind research. Maine’s Governor Baldacci has proposed a bond package to develop an offshore wind research test site that would be managed by the University of Maine. Permitting of offshore wind demonstration facilities within state waters would be streamlined under the Governor’s proposal. Industry has been engaged to produce and deploy these structures in Maine. The University is breaking ground for a wind energy
research facility. This will be the only facility in the U.S. that can design, manufacture, and test up to 70 meter components under one roof, including 5 MW turbine blades and spar or tension leg platform structure components for floating wind turbines. This facility is part of a 50,000 square foot AEWC Advanced Structures and Composites Laboratory that integrates design, manufacturing, and testing of advanced composite materials. The value of the facilities and equipment, which was established by a grant from the National Science Foundation in 1996, is about $50-million. The center employs 140 full and part-time faculty, researchers, and support staff from 15 different academic departments. The researchers have received the top awards in North America from ACMA and SAMPE in 2007, 2008, and 2009.

The successful candidate must have expertise in design and modeling of structures in the ocean environment, including structure-fluid interaction, and coupled aeroelastic and hydrodynamic models for offshore structures. Expertise in floating structures such as spar and tension leg platforms is highly desirable. Industry experience in designing and deploying ocean energy structures such as floating or fixed bottom wind turbines, or tidal energy structures is a plus. Applicants must have a Ph.D. in civil engineering, mechanical engineering, ocean engineering, or a closely related field. Academic rank will depend on qualifications. The successful candidate’s academic appointment will be in the Department of Civil and Environmental Engineering or Mechanical Engineering. This is an on-going, tenure track appointment. Candidates with credentials commensurate with appointment at the rank of full professor with tenure are encouraged to apply. Initial appointment to the named chair is for five years with reappointment contingent upon performance and availability of funds.

Applicants should include a current resume, a statement of professional interests and vision, and the names, affiliations, and contact information (including e-mail addresses) of at least three references. Applications should be sent to Correll Presidential Chair in Energy Search Committee, AEWC Advanced Structures and Composites Center, AEWC Building, University of Maine, Orono, ME 04469-5793 (or sent electronically to
doreen.boutin@umit.maine.edu). Applications will be reviewed as they are received.

The University of Maine is an equal opportunity/affirmative action employer.